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EFFECTS OF GRAVITY ON RADIALLY SUPPORTED
TELESCOPIC MIRRORS

RICHARD B. NELSONt

University of California, Los Angeles

Abstract-The paper presents an analysis of the optically effective distortions of a telescopic mirror due to gravity
loads, when the mirror is positioned so that the optical axis is horizontal.

The mirror is considered a shallow paraboloidal shell of variable thickness with antisymmetric gravity loads,
supported on its outer rim by arbitrarily distributed radial forces.

1. INTRODUCfION

THE PURPOSE of this investigation is the determination of the smal~ elastic deflections of
mirrors for large telescopes due to gravity effects. As indicated in Fig. 1, such mirrors
have a flat back and a paraboloidal reflecting surface. For analytical purposes, such mirrors
may be considered shallow paraboloidal shells of variable thickness. For typical mirrors,
the total thickness variation ranges from 10% to 20%, and the diameter to thickness ratio
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FIG. 1. Radially supported telescopic mirror.
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varies in the range of 7 to 10. In the range indicated the rise of the middle surface is only
1% to 2 %of the diameter, so that simplifications based on this extreme shallowness can
be made in the analysis. For the case of uniform thickness, the different equations for
spherical shells are given in [1] for loads without rotational symmetry. A much simpler
set of equations for shallow spherical shells is derived in [2], using the premise of shallow
ness to replace the spherical surface, as an approximation, by a paraboloid of revolution.
A generalization of this analysis to paraboloidal shells of variable thickness is therefore
better suited for the study of mirrors than a similar generalization of [1].

The equations for shallow shells of uniform thickness have been studied extensively
for various loadings and boundary conditions [3-6]. Flat plates of variable thickness have
been studied [7], and also certain classes of shallow shells of variable thickness for cases of
rotational symmetry [8], and antisymmetry [9].

A study of telescopic mirrors without central holes has been made in [10] on an ~.pproxi

mate basis, treating the mirror as a flat plate with corrective loads to allow for the curvature.
However, the solution obtained in [10] violates compatibility requirements for a flat plate
of variable thickness. Further, it is shown in [11], that the flat place concept as used in [10]
leads to incorrect relations for the determination of the displacements ofthe optical surface
of the mirror. According to [11], the consequences of the various approximations vary
depending on the parameters and on the type of mirror support and may result in severe
errors.

The analysis presented here, valid for paraboloidal thickness variation, is a special case
of the analysis for arbitrary thickness variation in [12], an analysis which follows the
approach of [2], but is valid for shells with a central hole and applied loads not derivable
from a potential function. Displacements tangent to the middle surface of the shell are also
obtained since they are needed to determine the optically effective distortions of the
reflecting surface of the mirror. Finally, an estimate of the effects of shear deformation is
developed and included in the results presented.

The analysis has been used to compute tables for the determination of optically effective
deformations of telescopic mirrors on radial supports [13].

2. DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS FOR
TELESCOPIC MIRRORS ON RADIAL SUPPOllTS

The differential equations and stress boundary conditions of [12], valid for elastic,
homogeneous, and isotropic shallow shells of nonuniform thickness, are presented here
for the special case of a telescopic mirror with a parabolic thickness variation, subjected
to gravity loads, and radially supported on its outer rim.

Let a be the outer rim radius, to and Ro be the thickness and radius of curvature of the
middle surface at the center of the mirror,t respectively, and let E be Young's modulus,
and v be Poisson's ratio. Then define the following quantities, Nrr , Noo , and Nre , the direct
stresses tangent to the middle surface; v,. and Yo, the transverse shear stress resultants;
M rn M ee , and M re , the stress couples; Pn Pe, and P, components of the load intensity acting
in and normal to the tangent plane to the middle surface; ii, vand w, the components of
the displacement of the middle surface in the meridional, circumferential, and normal
directions, respectively (see Fig. 2); and finally the thickness t, a function of the radius r.

t If the mirror has a central hole, to and Ro are values of the functions specifying the thickness and radius of
curvature, respectively, at the nominal center of the mirror, Fig. I.
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After introduction of the dimensionless quantities
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all unknown quantities and the applied loads are expanded into Fourier series. For the
intended application, these quantities are even or odd functions of e,

(W, U, N rr , N 66 , v,. ,M rn M 66 , P" p)

00

= L (wn , Un' N rrn' NOOn' v,.n' M rrn' M 66n' Prn , Pn) cos n8
n= 0

and
00

(v,Nr6 , Ye,Mr6 ,P6) = L (Vn , N r6n , V6n ,Mr6n ,p6Jsinne
n=O

where all quantities with the subscript n are a function of p only. For rotational symmetry,
n = 0,

Vo = N r60 = V60 = M r60 = P60 = o.

FIG. 2. Deflections, loads, transverse shear and tangential stress resultants, and bending moments.

For the case of the mirror positioned so the optical axis is horizontal, the only non
vanishing load components are for n = 1.

The mirror thickness is given by the parabolic law

t = I+ Kp 2
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where K describes the variation, so the load components are then given by

Sa 2
p,! = E(1 +Kp )

where S is the specific weight of the mirror material.
Following [2J, the direct stresses N rr., N 86.' and N'6. are expressed in [12J by means of a

stress function. The expressions are, for n = 0,

N 660 = cP~

where cPo is a stress function, and for n = I,

where cPl is a stress function and Cl is an arbitrary constant.
For values n ~ 2,

= ~F' _ n
2

FN rr• n 2 np p

where F n is a stress function.
As a matter ofconvenience, the thickness t(p) which appears explicitly in the differential

equations and boundary conditions in [12] is specified approximately by

t = e(y/2)p2

a simplification used previously in [7]. The value}' is chosen so that the errors introduced
by this approximation are minimized according to a mean square law, giving the relation
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The equations applicable for n = 0 are

"'0+(}+3YP )"'0+( - :2 +3YV)"'0 = 12(~~V2)e-(3Y/2)P2(atPo+ ~) (2.1a)

4>0+ (1-yp) 4>0+( - :2+YV) 4>0 = ae(y/2)p2",0 (2.1b)

where
"'0 = Wo (2.2)

and Co is an arbitrary constant. Equations (2.1) form a fourth order system of simultaneous
ordinary differential equations. However, the arbitrary constant Co appears in (2.1a), so
that a total of five boundary conditions is required to obtain the unknown functions 4>0
and "'0' For the case of stress boundary conditions for a shell with a central hole, the three
quantities

are prescribed on one rim. On the other rim, M.,o and only one of the two quantities
N"o' v,.o can be prescribed, the remaining one being defined by equilibrium. There are then
five relations as required. For a closed shell finite values of N "0 are obtained at P = 0 only if

4>0(0) = 0

while continuity of the radial slope "'0 requires

These two conditions, together with specification of M.,o and one of the two quantities
N "0 or v,.o on the outer rim define the solution.

Knowledge of the function "'0 permits the determination of the deflection Wo by integra
tion of equation (2.21 requiring one prescribed value of woo The deflection Uo may then be
obtained without further integration from the relation

Uo = e- (y/2)p2(P4>0 - v4>o) - apwo.

For n = 1, the required equations are

[
aCl Cl Sa (3 5 3)Jx atPl+-+---a -p +-Kp2p p3 E 4 12 (2.3a)



122

where

RICHARD B. NELSON

sa{[s-v ] (V) 3 (1 - v VY) }+E -2- K-(I-v)y P-YK 1-2" P + (;'3-r; Cl (2.3b)

(2.4)

and Cl and i\ are arbitrary constants.
Equations (2.3) form a fourth order system of simultaneous ordinary differential

equations. Due to the appearance of the two additional arbitrary constants, a total of six
boundary conditions is required for determination of the functions t/J 1 and <Pl' For stress
boundary conditions for a shell with a central hole, the quantities

C 1 sa( K 3)N", = <PI +r;-F: P+ 2P

N r61 = <PI

__ pz e<3YIZ)P2[, (2 +v) ]
M", - 12(1-vZ) t/Jl + P t/Jl

1
Qrl == v,., +pMr61

pZe<3YIZ)P2[ (4 ) (I-V ) ]
= - 12(I-vZ) t/J'{ + p+3YP t/J~+ -y+3(2+v)y t/JI

which enter the boundary conditions at each of the two rims are not independent. Six
values may be specified because the remaining two, one value N", or N r61 and one value
M", or Qrl are defined by equilibrium.

For the closed shell, finite values for N", are obtained only if

CI = 0, IcPl(O)1 < 00

while finite values for M", require

These three conditions and specification of one value N", or N r6 , and one value M",
or Qrl on the outer rim define the solution. Knowledge Oft/Jl permits determination of WI

by integration of equation (2.4), requiring a prescribed value of WI at a point p. The de
flection Ul is then obtained by integration of

Ul = e-<YIZ)P2[_VpcP~ +(1-2v)cPI +c1 _(1_v)Sa p_(1_2v)Sa KP3J-IXW 1
P E 2E'

requiring one prescribed value of UI' The displacement VI may then be obtained without
integration from

-( IZ) 2[ , VCl Sa Sa 3Jvl=pe Y P pcPI+(2-v)cPl---(1-V)-p-(2-v)-Kp -UI -lXpWl .
P E 2E
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The equations for n ;;:: 2 are

W:II+[~+61'PJW:1+[_1:;n
2

+3(3+V)')I+91'2p2JW:
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1+2n2 31'(1+2n2-v) Q.,.2 J f [n4 -4n2
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p P P

12(1- y
2
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2
F J
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2 oc e n n 2 n
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FilII [2 2 JFfff [ 1+2n
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2
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2
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(2.5a)

(2.5b)

The stress boundary conditions for a shell with a central hole require specification of
the four quantities.

=!F'- n
2

FN rrn P n p 2 n

n
Qr == v,. +-Mren n p n

on the inner and outer rims to determine the functions Wn and Fn• For the closed shell
finite values for Nrrn(O) and NreJO) require

FiO) = 0

F~(O) = 0

while finite values for the bending moments at p = 0 require

Wn(O) = 0

w~(O) = O.

These four conditions and specification of the quantities N rrn , N r9n , M rrn , and Qrn at the
outer rim provide the required eight conditions necessary to determine Wn and Fn • Know-
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ledge of w" and F" permits determination of u" by integration of

u' = e-<Y/2)P2(-VF"+~F' _ n
2
F) -O(W

" " P " p2 " ".

The constant of integration, which is selected as the value of u" at the interior rim,
u"(Po), is given by the relation

p2e-<y/2)P5 { (-I+v-vn2-2n2 )
u"(Po) = ~n2 -1) F;'(Po)-YPoF~(po)+ P6 +vy F~(po)

+ (3n
3

2
_ vn

2
)F,,(po)- 0( e(y/2)P5 [w~(Po)-~w"(Po)J} .

Po Po Po

The displacement v" may then be obtained from

P e - (Y/2)P
2
( " v , vn2 ) u" O(pw"

v = F --F --F ----
" n "p" p2" n n·

The telescopic mirror is radially supported on its outer rim by means of a distributed
edge force

(2.6)

where the dimensionless values N rrn depend upon the support system. The supports are
such that the resultant of the forces, aN,,(O) dO, acting on an element of the rim adO, lies in
the plane of the center ofgravity of the mirror. As shown in Fig. 1, this plane has the eccen
tricity A = toL\ with respect to the middle surface of the mirror at P = 1.

The forces and moments on the outer rim, P = 1, can thus be expressed in terms of the
values N rrn

M"n = L\PN"n (2.7a)

Q'n = -O(N"n (2.7b)

N'lJn = o. (2.7c)

The quantities 0(, .1, and the focal length L = 2af,f being the aperture number, can be
expressed in terms of the major nondimensional parameters K, P, and Po = ro/a. The
relations are

0( = PK

A- ~[2-1+!K-pri(1 +iKP6)]
- 4 1+!K-pW +tKP6)

a
L = 4Kp.

To apply the above analysis the values of the coefficients N rrn in equations (2.6,7)
must be specified, while the value of N r,,' independent of the support system, is given by

Sa
N r,[ = -EPI
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where

The values Nrrn for n ¥- I can be expressed by coefficients Pn in the form

The values Pn are, for n = 0,

Pi f~ Nrr(O) dO
Po=-~-----

2 g Nrr(O) cos 0 dO

and for n ~ 1,

P = P f~ Nrr(0) cos nO dO
n i f~ Nrr(O) cos 0 dO

125

In the special case where the force Nrr(O) is distributed as cos 0 over the lower half of
the circumference, -n12 =:; 0 =:; n12, the values Pn are

Ps = °

While the details depend on the support conditions, the Fourier coefficients Pn always
decrease somewhat faster than lin. The deformations corresponding to individual values
Pn = 1, for n > 3, also decrease with n, but much faster. As a result, the contribution to the
total deformation due to the terms n > 3 is found to be always minor, the major terms being
n = 0, 1,2 or 3. This fact will be utilized in the next section, when discussing the effect of
approximations. The relative unimportance of the terms n > 3 is very apparent in Table 1
given in connection with the example in Section 4.

TABLE 1. MEAN DEFLECTlONst iN CENTlMETERS

n o

0·301 0·087

2

2·140

3

o

4

0·056

5

o

6

0·013

t These values may be compared with the wavelength of visible light, A - 5·5 x 10- 5 cm.
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3. DEFORMATION OF THE MIRROR SURFACE

The optical effect of the deformation ofthe mirror depends upon the normal component
of the displacements of the mirror surface W S ' The nth term of its Fourier expansion, W sn ,

may be computed from the displacements Wn and Un of the middle surface, and from the
effects of the associated direct stresses N rr" and N /1/1" in accordance with the underlying
assumptions of the shell theory. Due to the linearity of the problem, the contributions to
the normal displacement of the mirror surface may be considered individually and then
added. The first and major contribution is due to Wn , the displacement component normal
to the middle surface. Since the angle between the normal to the middle surface and the
normal to the mirror surface is small, the contribution from this source is simply Wn •

Due to the parabolic thickness of the mirror, a radial motion Un ofa point on the middle
surface results (to first order) in a normal contribution

(3.1a)

Further, shell theory implies a state of plane stress associated with the resultants N rr

and N/I/I' Changes in the thickness due to the Poisson's ratio effects result therefore in a
contribution

(2) _ v/3(N N)
Wn - 2 rr" + /1/1"' (3.1 b)

It can be shown ([12], Appendix D) that these expressions can be expected to be accurate
to better than 2% for n :::; 4. For larger values of n the errors increase, being nearly 8%
for n = 8. For normal support conditions the convergence of the Fourier series is very fast,
so that the contribution due to the terms n > 3 is very small and no significant error occurs.

A second Poisson's effect exists in connection with the linearly distributed bending
stresses, but this effect and also that due to the rotation of the cross section can be shown
to be insignificant [12].

It is shown in the Appendix that for the problem of a telescopic mirror supported on
its rim, Fig. 1, the knowledge of the bending displacement permits a simple estimate of
the additional effects of shear deformation. The correction due to this effect is

/32 (1 n
2

)W(3) = ---(1 +/(/2)2 w" +-w' --w
n 5(1- v) n p n p2 n

(3.1c)

and can be conveniently combined with the contributions given by equations (3.1a, b). The
total normal displacement W sn of the surface of the mirror becomes then

(3.2)

In the case of rotational symmetry, n = 0, the deflection Wo, and thus Wso , contains an
arbitrary constant bo, a rigid body translation of the mirror. Further, the optical effects
of the deflection can be reduced by changing the location of the focus. These two matters,
considered together, are equivalent to adding a suitable expression bo+b1p2 to the com
puted displacement Wso . If the manner of operation of the telescope permits this refocusing,
the values bo and b i may be selected to minimize optical distortions. This consideration
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has been included in all results presented, where bo and b l have been selected to minimize
the mean square error.t

In the case of antisymmetry, n = 1, the displacement contains an arbitrary term
b2Pcos () which corresponds to a rigid body rotation of the mirror. In all results given it is
again assumed that the most favorable rotation is selected and that the mean square errort
is minimized.

4. NUMERICAL EXAMPLE AND DISCUSSION

As a typical example, a quartz mirror with the following dimensions is considered:
radius a = 100in., nominal minimum thickness to = 20 in., maximum thickness l(1) =
23·74 in., internal hole radius ro = 20 in., and focal length L = 668 in. The nondimensional
parameters are, K = 0,187, P= 0·20 and Po = 0,20, and the properties of the material are,
E = 10·6 x 106 lb/in2, v = i, and S = 0·0795Ib/in3

.

The mirror is deemed to be supported by compressive radial forces, Fig. 3, distributed
proportional to cos () for - nl2 ;S; () ;S; nl2 but zero elsewhere.

Table 1 gives the mean values of the components of the deflection of the mirror surface
for n ;S; 6. It is seen that for this type of support, the astigmatic term n = 2 dominates. It is
further seen that the terms n > 2 are unimportant. The mean value ofthe surface deflection
due to the combined effect of all components is (w.)mean = 2·16 X 10- 5 cm.

Smaller deformations of the mirror can be achieved by using the support condition,
Fig. 4, where the distribution of the radial edge force is proportional to cos () over the
entire rim. In this case all contributions vanish except the term n = 1, which has again
the value given in Table 1. The total mean deflection in this situation is (w.)mean = 0·87 x
10- 6 cm. The mean deflection is greatly reduced, to about -ftJ of the former value.

The numerical results for the example were obtained on an IBM 7094 digital computer
which was programmed to generate the deflection W.n in terms ofa series expansion of the
same form as that encountered in the study of uniform thickness shallow shells, i.e. Bessel

FIG. 3. Distribution of support force on lower half of mirror rim.

t If the deformations of a mirror are a sufficiently small fraction of the wavelength of visible light, the value
of the mean square error is a measure of the quality of the mirror. This result follows from an asymptotic analysis
for small deviations [15].
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FIG. 4. Cosine support over entire rim.

functions of order n with complex argument. The computer program was arranged to
calculate for values n ~ 6 twenty terms p-n, p-n+2, to p-n+38 and twenty terms pn In p,
pn+2ln p, to pll+38 In p. The convergence of the series was excellent for all values of the
parameters of interest for telescopic mirrors, so that the number of terms carried was
more than adequate. A plot of the optically effective deflections at () = 1t/2, is given in
Fig. 5 for the mirror support shown in Fig. 3.

The above results, which allow for the effects of the variation in thickness of the mirror,
may be compared with results obtained from [2] for uniform thickness. The values in
Table 2 were obtained by using the average thickness to compute an approximate uniform
stiffness of the shell, but using the actual nonuniform weight distribution as suggested
in [11]. The values in Table 2 also include the shear correction equation (3.1c). Comparison
of Tables 1 and 2 shows that the use ofthe average thickness gives very good results, the
differences being everywhere less than 4 %. The effect of the variation in stiffness due to

6

5.34

5

OL......_-L-_--L__L-_-L._---.L__-'--_-'-_-----l__..J.-_--'-=

o 0.1 0.2 0.3 04 ' 0.5 0.6 0.7 0.8 09 1.0
rIa

FIG. 5. Optically effective deflection along the line 0 =; nl2 for mirror supported according to Fig. 3.
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TABLE 2. MEAN DEFLECTIONS [2] IN CENTIMETERS

129

II o

0·290 (}087

2

2-230

3

o

4

0·057

5

o

6

(}013

the variation in thickness appears therefore to be small, although somewhat larger devia
tions have been found for other values ofthe basic parameters. The use of[2] for engineering
purposes appears therefore reasonable, but the inclusion of the shear correction seems
desirable.

The effect of gravity on mirrors has recently been studied [16], using the three dimen
sional theory of elasticity. The analysis is purely numerical, based on finite differences,
and gives results in the form of topographical maps of the deflection pattern (not optically
corrected). Although a precise comparison of the results of [16] with those of shell theory
is thus difficult, the two analyses predict similar deflections on the interior of the mirror.
However, the results differ appreciably near the outer rim in locations where radial support
fdrces do not vanish. Such differences are believed to be due to the effect of the concen
tration of the support forces in [16] on a fraction (%.) of the thickness.

The analysis presented in this paper has been used to prepare tables [13] which permit
simple computation of mean surface deflections and rotation at the outer rim of the mirror.
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APPENDIX

Estimate ofshear deformation

The problem of the bending of plates including shear deformation is considered in [14J,
where the response of a plate is characterized by three quantities, a transverse deflection w,
and two angles t/fr and t/fe. The latter are, respectively, the rotation of an elemental area of
the middle surface of the plate in the rand () direction. For the present purpose the relations
obtained in [14J are written in polar coordinates, and in the dimensionless variables defined
in Section 2.

The moments and shears and the quantities w, t/f" t/fe are related by

(A.1a)

(Alb)

(A.1c)

(A2a)

(A.2b)

where t is a dimensionless thickness.
The factor k in equations (A2) depends upon the distribution of the shear stress. In

static problems the distribution is approximately parabolic, in which case k becomes i.
This value is used below. For static problems, the differential equations of equilibrium,
obtained from [14] by dropping the inertia terms, are

(A3a)

(A.3b)

(A.3c)
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(A.4b)

A special solution suitable for the present purpose is obtained by assuming that 1/1,
and 1/18 may be obtained from a potential function WB,

1/1 = - oWB (A.4a)
, op

10wB
1/18 = -p 08 .

The function Wis eliminated from equations (A.1-3) resulting in the equation

V4 12(1- v2
)

WB = p2
t
3 P (A.5)

where

(A.6c)

(A.6a)

(A.7a)

(A.6b)

(A.7b)

The moments and shear are expressed in terms of WB

p2t2 [02WB (1 OWB 102WB)]
M" = 12(I-v2) Op2 +v Pop +p2 oe2

p2t3 [1 OWB 102WB 02WB]
M88 = -12(I-v2) P op +p2 002 +v Op2

p2 t 3 0 (1 OWB)

M'8 = -12(1 +v) op p 00

p2t3 a
v,. = - 12(1- v2) op (V2WB)

p2t3 1 a
Ve = -12(1- v2) pOO(V

2
WB)'

In the case of stress boundary conditions, the solution WB of the differential equation
(A.5) can be obtained independently of the deflection Wbecause the boundary conditions
which follow from equations (A.6, 7) contain only derivatives ofwB' Equations (A.5-7) are
of the same form as the corresponding equations in Kirchhoff's plate theory, i.e. WB is the
deflection due to bending effects when shear deformations are neglected. Just as for the
conventional plate theory, MrS and v,. cannot be specified separately, only the value of the
combination can be given,

loM'8
Q, = v,.+p 00'

This restriction on the boundary conditions is due to the fact that equations (AA) are
not the most general representations of 1/1, and 1/18'

The total deflection Wis obtained from WB by substitution of equations (AA, 7) into
equations (A.2), which give after integration

p2 t2
W = WB- 5(I-v) V

2
WB • (A.8)
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An arbitrary constant could be added to this expression, but is ignored because such a
constant is also contained in the solution for W B . Equation (A.8) indicates that the additional
deflection due to shear is given by the second term, so that the total deflection w may be
determined from the deflection W B .

No such simple approach applied for shells, or for plates of variable thickness. However,
if the shells are flat and the variation in the thickness is slight, the second term of equa
tion (A.8) should give a reasonable estimate of the shear deformation if the thickness
t in equation (A.8) is interpreted as a mean value. Using the mean value t = 1+K/2, the
nth term of the Fourier expansion of the corrective term in equation (A.8) is given by
equation (3.1c) in Section 3.

The effect of the correction due to shear on the total deformation may be seen from the
following table giving the changes in the mean values of the deflections Wsn for the example
in Section 4.

EFFECT OF SHEAR ON THE MEAN VALUES OF THE DEFLECTION w,.

n

Percentage increase

o

3

2

5

3

14

4

20

5

25

6

26

The effect of the correction due to shear in the example is quite small, only 5%for the
governing term n = 2. However, larger effects occur for larger values of {3. In addition,
the shape of the deflection curve for n = 1 and the corresponding mean value of Wsl are
very sensitive. The 1%difference given in the above table is due to a coincidencet and is
not representative of the shear effect for n = 1 in general. For a mirror with the same
dimensions, but without a hole, or with a hole Po = 0'3, the shear effect for n = 1 is about
+30 %and - 30 % respectively. The inclusion of the effect is thus indicated.

(Received 17 December 1968; revised 9 April 1969)

A6cTpaKT-B pa60Te Jl,aeTCli aHaJIH3 OnTH'ieCKH 3<11IjleKTHBHbIX Jl,HCTOPCHH TeJIecKonH'IeCKoro 3epKaJIa
\lOJl, BJIHBHHeM CHJI TlIIKeCTH, BCJIeJl,CTBC KOrJl,a 3epKaJIO HaXOJl,HTCli B TaKOM nOJIOIKeHHH, 'ITO OnTH'IecKaJl
OCb ropH30HTaJIbHali.

3epKaJIO C'IHTaeTCli nOJIOrOH nOpa60JIH'IecKOH 060JIO'lKOit nepeMeHHoit TOJIUlHHbl C aHTHCHMMeTpH'Ie
CKHMH CHJIaMH TJllKeCTH. 0HO onHpaeTCli Ha CBoeM BHeWHOM 60pTe C nOMoUlblO npOH3BOJIbHO pacnpe
Jl,eJIeHHbIX paJl,HanbHblX YCHJIHit.

t The sensitivity of the results for n = 1 is due to the fact that the normal surface deflection caused by extension
of the middle surface, and that caused by bending and associated shear effects are of opposite sign, so that, de
pending upon the values Po, Kand P, one of the two effects will prevail and dominate the deflection pattern. As a
result, the inclusion of shear may increase or decrease the mean deflection, a surprising situation which does not
occur for other values of n. The radical changes in deflection shapes may be seen from the plots of W,I in Figs.
C2a--<: of [12]. The small change of 1 % given above, for n = 1, is due to the fact that the example lies on the
borderline between the two situations which increase or decrease the mean value of W,I'


